A team of researchers from the Department of Physics and Astronomy at the University of British Columbia, Canada, has tackled the question ‘what causes the slow accelerating expansion of the Universe’ in a study that tries to resolve a major incompatibility issue between two theories: quantum mechanics and Einstein’s theory of general relativity.
The study, published in the journal Physical Review D, suggests that if we zoomed in-way in-on the Universe, we would realize it’s made up of constantly fluctuating space and time.
“Space-time is not as static as it appears, it’s constantly moving,” said lead author Qingdi Wang, a Ph.D. student at the University of British Columbia.
“This is a new idea in a field where there hasn’t been a lot of new ideas that try to address this issue,” said Bill Unruh, a physics and astronomy professor at the University of British Columbia.
In 1998, astronomers found that the Universe is expanding at an ever-increasing rate, implying that space is not empty and is instead filled with dark energy that pushes matter away.
The most natural candidate for dark energy is vacuum energy.
When physicists apply the theory of quantum mechanics to vacuum energy, it predicts that there would be an incredibly large density of vacuum energy, far more than the total energy of all the particles in the Universe.
If this is true, Einstein’s theory of general relativity suggests that the energy would have a strong gravitational effect and most physicists think this would cause the Universe to explode.
Fortunately, this doesn’t happen and the Universe expands very slowly. But it is a problem that must be resolved for fundamental physics to progress.
Unlike other physicists who have tried to modify the theories of quantum mechanics or general relativity to resolve the issue, Wang and co-authors suggest a different approach.
They take the large density of vacuum energy predicted by quantum mechanics seriously and find that there is important information about vacuum energy that was missing in previous calculations.
Their calculations provide a completely different physical picture of the Universe.
In this new picture, the space we live in is fluctuating wildly.
At each point, it oscillates between expansion and contraction.
As it swings back and forth, the two almost cancel each other but a very small net effect drives the Universe to expand slowly at an accelerating rate.
But if space and time are fluctuating, why can’t we feel it?
“This happens at very tiny scales, billions and billions times smaller even than an electron,” Wang said.
“It’s similar to the waves we see on the ocean. They are not affected by the intense dance of the individual atoms that make up the water on which those waves ride,” Prof. Unruh said.
Source: Sci News
Leave a Comment
You must be logged in to post a comment.